TERRAMETRA

GRAPHS and FUNCTIONS CIRCLES

Terrametra Resources
Lynn Patten

2.2
 CIRCLES

- Center-Radius Form
- General Form
- An Application

CIRCLES

CIRCLES

A circle is the set of all points in a plane that lie a given distance from a given point.

The given distance is the radius of the circle, and the given point is the center.

Center-Radius Form of the Equation of a Circle

Center-Radius Form of the Equation of a Circle

A circle with center $(\boldsymbol{h}, \boldsymbol{k})$ and radius \boldsymbol{r} has equation ...

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

which is the center-radius form of the equation of a circle.
A circle with center $(\mathbf{0}, \mathbf{0})$ and radius r has equation ...

$$
x^{2}+y^{2}=r^{2}
$$

Example 1

Finding the Center-Radius Form

1(a) Find the center-radius form of the equation of a circle with center $(-3,4)$ and radius 6 .

Solution:

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2}=r^{2} & \text { Center-radius form. } \\
{[x-(-3)]^{2}+(y-4)^{2}=6^{2} } & \text { Substitute. } \\
& \text { Let }(h, k)=(-3,4) \text { and } r=6 .
\end{aligned}
$$

Watch signs here.

$$
(x+3)^{2}+(y-4)^{2}=36 \quad \text { Simplify }
$$

Example 1

TERRAMETRA

Finding the Center-Radius Form

1(b) Find the center-radius form of the equation of a circle with center $(0,0)$ and radius 3 .

Solution:

The center is the origin and $r=3$.

$$
\begin{array}{ll}
x^{2}+y^{2}=r^{2} & \text { Center-radius form. } \\
x^{2}+y^{2}=3^{2} & \text { Substitute. } \\
x^{2}+y^{2}=9 & \text { Simplify. }
\end{array}
$$

Example 2

Graphing Circles

2(a) Graph the circle discussed in Example 1a.

$$
(x+3)^{2}+(y-4)^{2}=36
$$

Solution:

Writing in center-radius form ...

$$
[x-(-3)]^{2}+(y-4)^{2}=6^{2}
$$

... gives $(-3,4)$ as the center and 6 as the radius.

Graphing Circles

2(b) Graph the circle discussed in Example 1b.

$$
x^{2}+y^{2}=9
$$

Solution:

Writing in center-radius form ...

$$
x^{2}+y^{2}=3^{2}
$$

... gives $(0,0)$ as the center and 3 as the radius.

General Form of the Equation of a Circle

General Form of the Equation of a Circle

For some real numbers D, E, and F, the equation ...

$$
x^{2}+y^{2}+D x+E y+F=0
$$

... can have a graph that is a circle or a point or be nonexistent.

General Form of the Equation of a Circle

Consider $(\boldsymbol{x}-\boldsymbol{h})^{2}+(\boldsymbol{y}-\boldsymbol{k})^{2}=\boldsymbol{c}$
There are three possibilities for the graph based on the value of $c \ldots$

1. If $\boldsymbol{c}>\mathbf{0}$, then $\boldsymbol{r}^{2}=\boldsymbol{c}$, and the graph of the equation is a circle with radius $\sqrt{\boldsymbol{c}}$.
2. If $\boldsymbol{c}=\mathbf{0}$, then the graph of the equation is the single point $(\boldsymbol{h}, \boldsymbol{k})$.
3. If $\boldsymbol{c}<\mathbf{0}$, then no points satisfy the equation and the graph is nonexistent.

Example 3

Finding the Center and Radius by Completing the Square

3(a) Show that $x^{2}-6 x+y^{2}+10 y+18=0 \ldots$ has a circle as its graph. Find the center and radius.

Solution:

Complete the square twice, once for x and once for y.

$$
\begin{gathered}
x^{2}-6 x+y^{2}+10 y+18=0 \\
\left(x^{2}-6 x\right)+\left(y^{2}+10 y\right)=-18 \\
{\left[\frac{1}{2}(-6)\right]^{2}=(-3)^{2}=9 \quad\left[\frac{1}{2}(10)\right]^{2}=5^{2}=25}
\end{gathered}
$$

Add 9 and 25 on the left to complete the two squares, and to compensate, add 9 and 25 on the right.

Example 3

Finding the Center and Radius by Completing the Square

3(a) Show that $x^{2}-6 x+y^{2}+10 y+18=0 \ldots$ has a circle as its graph. Find the center and radius.

Solution (cont'd):

Add 9 and 25 on both sides.

Complete the square.
$\left(x^{2}-6 x+9\right)+\left(y^{2}+10 y+25\right)=-18+9+25$

$$
\begin{aligned}
(x-3)^{2}+(y+5)^{2} & =16 \quad \text { Factor. } \\
(x-3)^{2}+[y-(-5)]^{2} & =4^{2}
\end{aligned}
$$

Because $4^{2}=16$ and $16>0$, the equation represents a circle with center $(3,-5)$ and radius 4 .

Example 4

Finding the Center and Radius by Completing the Square

4(a) Show that $2 x^{2}+2 y^{2}-6 x+10 y=1 \ldots$ has a circle as its graph. Find the center and radius.

Solution:

To complete the square, the coefficients of the x^{2} - and y^{2}-terms must be 1 .

$$
\begin{array}{rll}
2 x^{2}+2 y^{2}-6 x+10 y & =1 & \\
x^{2}+y^{2}-3 x+5 y & =\frac{1}{2} & \text { Divide by } 2 . \\
\left(x^{2}-3 x\right)+\left(y^{2}+5 y \quad\right) & =\frac{1}{2} & \begin{array}{l}
\text { Rearrange and regroup } \\
\text { terms. }
\end{array}
\end{array}
$$

TERRAMETRA

Example 4

Finding the Center and Radius by Completing the Square

4(a) Show that $2 x^{2}+2 y^{2}-6 x+10 y=1 \ldots$ has a circle as its graph. Find the center and radius.

Solution (cont'd):
Complete the square for both x and y.

$$
\begin{aligned}
& \left(x^{2}-3 x+\frac{9}{4}\right)+\left(y^{2}+5 y+\frac{25}{4}\right)=\frac{1}{2}+\frac{9}{4}+\frac{25}{4} \\
& \qquad\left(x-\frac{3}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=9 \quad \text { Factor and add. } \\
& \qquad\left(x-\frac{3}{2}\right)^{2}+\left(y-\left(-\frac{5}{2}\right)\right)^{2}=3^{2} \quad \text { Center-radius form. } \\
& \text { e equation has a circle as its graph with center at }\left(\frac{3}{2},-\frac{5}{2}\right) \\
& \text { radius 3. }
\end{aligned}
$$ and radius 3.

Example 5

Determining Whether a Graph

 is a Point or Nonexistent5(a) The graph of $x^{2}+10 x+y^{2}-4 y+33=0 \ldots$ is either a point or is nonexistent. Which is it?

Solution:

$$
\begin{gathered}
x^{2}+10 x+y^{2}-4 y+33=0 \\
x^{2}+10 x+y^{2}-4 y=-33 \quad \text { Subtract } 33 . \\
{\left[\frac{1}{2}(10)\right]^{2}=25\left[\frac{1}{2}(-4)\right]^{2}=4} \\
\left(x^{2}+10 x+25\right)+\left(y^{2}-4 y+4\right)=-33+25+4
\end{gathered}
$$

Complete the square.

TERRAMETRA

Determining Whether a Graph is a Point or Nonexistent

5(a) The graph of $x^{2}+10 x+y^{2}-4 y+33=0 \ldots$ is either a point or is nonexistent. Which is it?

Solution (cont'd):

$$
\begin{aligned}
\left(x^{2}+10 x+25\right)+\left(y^{2}-4 y+4\right) & =-33+25+4 \\
(x+5)^{2}+(y-2)^{2} & =-4 \quad \text { Factor; add. }
\end{aligned}
$$

Since $-4<0$, there are no ordered pairs (x, y), with x and y both real numbers, satisfying the equation..

The graph of the given equation is nonexistent.
If the constant on the right side were 0 , the graph would consist of the single point $(-5,2)$.

Determining the Epicenter of an Earthquake

Suppose receiving stations A, B, and C are located on a coordinate plane at the points $(1,4),(-3,-1)$, and $(5,2)$. Let the distances from the earthquake epicenter to these stations be 2 units, 5 units, and 4 units, respectively. Where on the coordinate plane is the epicenter located?

Solution:

Graph the three circles.
From the graph it appears that the epicenter is located at $(1,2)$.
To check this algebraically, determine the equation for each circle and substitute $x=1$ and $y=2$.

Determining the Epicenter of an Earthquake

Station A:

$$
\begin{array}{r}
(x-1)^{2}+(y-4)^{2}=4 \\
(1-1)^{2}+(2-4)^{2} \stackrel{?}{=} 4 \\
0+4 \stackrel{?}{=} 4 \\
4=4
\end{array}
$$

Station B:

$(x+3)^{2}+(y+1)^{2}=25 \quad(x-5)^{2}+(y-2)^{2}=16$
$(1+3)^{2}+(2+1)^{2} \stackrel{?}{=} 25$
$16+9 \stackrel{?}{=} 25$

$$
25=25
$$

Station C:

$(1-5)^{2}+(2-2)^{2} \stackrel{?}{=} 16$
$16+0 \stackrel{?}{=} 16$
$16=16$

